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1. Introduction and Motivation

Artificial Intelligence is extremely popular in our new technology age. It is widely applied in every aspect
of our daily life, such as business, industry and healthcare. Combining artificial intelligence and machine
learning techniques, our project is going to delve into a dataset which collected 8 consecutive readings from 8
human arm muscle sensors (64 independent variables in total) to predict associated gestures for an artificial
arm.

The dataset has 11678 observations of human arm muscle activity corresponding to four different hand
gestures from a prosthetic control system. It has four classes of motions which are “rock”, “scissors”, “paper”
and “ok” as the response variable. Description of variables is shown in Table 1. In this dataset, gestures,
i.e., the V65, is our response variable. The variables V1 to V8 are related to the first reading of 8 sensors, V9
to V16 are related to the second reading of 8 sensors, etc. All predictors are continuous variables.

Our essential motivation for this project is to predict the gestures as accurately as possible. We want
to fit the data with various classification methods including logistic regression, LDA, QDA, KNN, SVM,
classification tree and random forest, and find the one that has the best prediction performance. Although
the sample size is large, some classification methods such as KNN and QDA, are not suitable for a large
number of predictors. So before model selection, we also want to reduce the dimension of predictors. To
achieve this objective, we consider two possible methods, PCA and variable selection. Additionally, we want
to know the important predictors for classifying the 4 gestures.

Table 1: Data Description

Variables names Type Description
V65 categorical Response (rock:0, scissors:1, paper:2, ok:3)
V1-V8 continuous Reading 1 Sensor 1-8
V9-V16 continuous Reading 2 Sensor 1-8
V17-V24 continuous Reading 3 Sensor 1-8
V25-V32 continuous Reading 4 Sensor 1-8
V33-V40 continuous Reading 5 Sensor 1-8
V41-V48 continuous Reading 6 Sensor 1-8
V49-V56 continuous Reading 7 Sensor 1-8
V57-V64 continuous Reading 8 Sensor 1-8

2. Data Exploration

2.1 Individual Variables

To have an intuitive sense of the dataset, first we can have a look at the barchart of the response variable
gesture, which is on the left side of the Figure 1. We see that the gesture is extremely balanced, as each
category of the response variable has around 2900 observations. It is good for following analysis, especially
for prediction. Next, we want to know more about the independent variables. We find that the individual
distributions of all 64 predictors are quite similar, so we can only take the first variable V1 as an example,
which is the first reading of the first sensor. Based on the right side boxplot in Figure 1, we notice that the
distribution of V1 is focused around 0 and have long symmetric tails.
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Figure 1: Barchart of Gestures and Boxplot of V1

2.2 Correlation Between Predictors

Then, we want to explore the relationship between predictors. The left plot in Figure 2 is the correlation
matrix of all 64 predictors. We find some interesting structure in this correlation matrix. To be more clearly,
we can zoom in and only focus on the first 16 varaibles, that is, V1-V16, which is shown on the right side of
Figure 2. The grey boxes represent correlation matrix within the same reading. The small blue boxes are
negative correlations between adjacent readings of the same sensor. And the small red boxes are the positive
correlations between adjacent sensors of the same reading. To see exact correlations between sensors, we also
rearrange the correlation matrix in the order of sensors, which is shown in Figure 3. So in this correlation
matrix, the first 8 variables are the 8 readings for the first sensor, the next 8 ones are the readings for the
second sensor, etc. The reordered correlation matrix reconfirms our conclusions before. The orange box
also shows that the same reading of the first and second sensors are positively correlated. Based on this
correlation matrix, we can also view that the first 4 sensors are almost uncorrelated to the last 4 sensors.
The results of correlation matrix make sense, as we expect that activities of nearby muscle or consecutive
time have some similarities.

Figure 2: Correlation Plots
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Figure 3: Correlation Plots

2.3 Relationship with Response

Next, we explore the relationship between predictors and the response. Using the density plots of every
predictor with different response classes, we address the different significance of each predictor variable for
gesture. For example, in Figure 4, the densities of sensor 1 in reading 1 for 4 gesture classes were quite
similar, while the densities of sensor 7 in reading 1 were quite different. In this case, the sensor 7 should be
put on more weights for prediction than the sensor 1. The importance diversity encouraged us to do variable
selection to reduce dimensions.

Figure 4: Density Plots

To visualize the data more comprehensively, we can look at the scatterplot and contour of density of V2 and
V7 in Figure 5. The joint distributions of V2 and V7 look like normal with unequal variances for different
gestures. Based on this plot, we expect that the decision boundary between the classes is non-linear and
Quadratic discriminant analysis (QDA) may perform well on this dataset.

Figure 5: Scatterplot and Contour of V2 and V7
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2.4 PCA

Looking at the pairwise scatterplot of V2 and V7 in Figure 5, it seems that V2 and V7 have no obvious pairwise
structure. As no specific pattern is detected, PCA is not presumed as a good way to reduce dimension. We
try PCA and find that the first 35 principal components merely cover 80% of the variance which means that
the effect of this dimension reduction method to this dataset is terrible.

2.5 Variable Selection

As mentioned before, we have 64 predictor variables and some are possibly more important than others.
Therefore, we try two methods to perform variable selection to reduce redundance and better the prediction
performance and interpretability.

The first method is to use random forest with mtry=8 to fit the whole dataset and check the importance of
the variables. We find that the last but one sensor in each reading is most important and the second sensor
in each reading is next most important, which can be seen in Figure 5.

The second method is to utilize stepwise forward selection based on AIC and BIC values to choose the
corresponding optimal logistic regression models respectively and find the important variables. The important
variables found in this method are basically the same as the ones we find before using random forest.

Finally we separately check the overall prediction accuracy using 8 predictors, i.e., the 7th sensors in 8
readings, and the accuracy using 16 predictors, i.e., the 7th and 2nd sensors in 8 readings. And we reach the
conclusion that the latter one have overall better performance than the former one. Thus, we finally decide
to carry on the remaining analysis with 16 important predictors.

Figure 6: The Importance of the Variables

3. Classification Methods

In this part, we are about to fit various classification models using 16 significant variables. In order to
compare their prediction performance, we first randomly split the dataset into training and testing parts at
a ratio about 8:2. Classification models are built on training set, and testing set is used to evaluate their
prediction accuracy.
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Multinomial logistic regression and linear discriminant analysis (LDA) are powerful models that are usually
used in machine learning when decision boundary is approximately linear. Multinomial logistic regression is a
generalization of original logistic regression when the response has multiple classes. And LDA assumes data
of each class follows a multivariate gaussian distribution with identical covariance matrix. Due to our guess
above that for this dataset the underlying decision boundary is non-linear, we believe that these two linear
models, i.e., multinomial logistic regression and LDA are not good choices. To verify our expectation, we
fit these two models, and the prediction accuracy of multinomial logistic regression and LDA on test data
set are only 34.5% and 34.8%, respectively. So we are encouraged to try non-linear version models in the
next steps. If these models show great improvement regarding prediction performance, we could confirm our
initial guess and try other flexible models.

3.1 Quadratic discriminant analysis (QDA)

Refer to Figure 5, we found that QDA is likely to be an acceptable model. So we first fit with QDA. Compared
to the terrible prediction performance of logistic regression and LDA, QDA fit dramatically improves the
predictive accuracy, which is 90.92%.

3.2 Multinomial Logistic Regression with Quadratic Terms (LR)

As QDA performs so well on our data, next we add quadratic terms of each predictor into the original logistic
regression model to generalize it. The modified model is more complicated and could generate complex
boundaries. The predictive accuracy of the fitted multinomial logistic regression including quadratic terms
(LR) is about 88.78%, which is close to that of QDA. In Table 2, we compare the confusion matrices of QDA
and LR with quadratic terms. The first column is the true classes. In fact, we find that the predictions
from the two models are very similar, but when the true classes of gesture are ‘2’ or ‘3’, QDA has better
performance.

Table 2: QDA & LR Prediction

Truth QDA 0 1 2 3 LR 0 1 2 3
0 559 1 4 38 560 1 7 34
1 0 544 8 17 0 556 4 9
2 9 20 559 12 13 38 523 26
3 21 72 10 462 15 103 12 435

3.3 K-Nearest Numbers (KNN)

Then we try nonparametric methods such as K-Nearest Numbers (KNN) on this dataset. With 5-fold cross
validation, we select k as 3 at the smallest cross validation error on the training set, which is shown in Figure
7. The predictive accuracy is about 84.63%. The prediction performance is lower than QDA, so it possibly
indicates that KNN with k=3 is too flexible for our data, resulting in overfitting. Another possible reason
is that KNN cannot handle high dimensional data. Though we reduced the dimension, we still have 16
predictors.
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Figure 7: The 5-fold Cross Validation Errors for Each Choice of K.

3.4 Support Vector Machine (SVM)

We also try the Support Vector Machine (SVM) classifiers with radial kernel and polynomial kernel. The
optimal parameters such as cost, gamma, degree are chosen by minimizing the validation errors. Here we use
validation set instead of cross validation under consideration of the computational cost. For the SVM with
radial kernel, the optimal parameters chosen are that cost = 1, gamma = 0.5 . For the SVM with polynomial
kernel, the optimal parameters cost = 100, degree = 2. Table 3 showes that SVM with these two kernels both
performe well, with the one with polynomial kernel having higher accuracy rate than the one with the radial
kernel. We see that the SVM with polynomial kernel has optimal degree 2 and relatively better prediction
performance, indicating that the decision boundary between classes is probably linear in the transformed
space with quadratic terms.

Table 3: SVM with Radial & Polynomial Kernel Prediction

Truth vs SVM Radial 0 1 2 3 Polynomial 0 1 2 3
0 571 0 3 28 552 1 15 34
1 0 549 12 8 0 548 9 12
2 208 20 364 8 7 38 537 18
3 25 56 20 464 16 80 11 458

3.5 Classification Tree (CART) & Random Forest (RF)

Finally we fit classification tree (CART) and random forest (RF) to the dataset. The ultimate decision tree
model is shown in Figure 8. We see that it uses the variables ‘V63’, ‘V58’, ‘V31’, ‘V15’, ‘V50’ and ‘V47’,
which implies that these predictors are crucial for gesture. The decision tree had accuracy slightly larger
than 70%, which is hardly counted as good performance. This intrigued us to implement random forest to
better the prediction performance.
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Figure 8: Decision Tree Plot

Random forest has almost the same performance as QDA, which is 91.14%. Becuase partial plots of 8 readings
for the same sensor displaye a similar pattern, we just show the partial plots of V7 and V18 in Figure 9 as the
representatives of 7th and 2nd sensor. Keeping other predictors unchangeable, the influence of the 7th and
2nd sensors to the gesture classes varies from time to time. It is not linear nor constant, so these senors
produce a significant and non-linear influence to response. In general, the effects of sensors on response
exhibite different patterns when they are close to 0 and away from 0.

Figure 9: Random Forest Partial Plots

Table 7 showes the prediction results of the classification tree and random forest. For each class category,
random forest outperforms the classification tree model.

Table 4: CART and RF Prediction

Truth vs CART 0 1 2 3 RF 0 1 2 3
0 463 1 49 89 569 0 9 24
1 2 441 52 74 0 503 18 48
2 37 35 365 163 2 15 569 14
3 62 92 23 388 33 24 20 488
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3.6 Prediction Accuracy Comparison

Table 5: Prediction Accuracy of Various Classification Methods

Method Prediction Accuracy % Method Prediction Accuracy %
Logistic Regression with quadratic terms 88.78 Logistic Regression 34.46

QDA 90.92 LDA 34.85
SVM (polynomial) 89.68 KNN 84.63
Random Forest 91.14 SVM (radial) 83.39

Classification Tree 70.93

Table 5 collectes the prediction accuracy of all the classification methods we went through. We can see that
QDA and random forest have the best prediction performance, and SVM with degree-2 polynomial kernel
and logistic regression with quadratic terms of the predictors have the next best performance.

4. Conclusion and Discussion

This specific dataset is balanced and clearly has non-linear, probably quadratic decision boundary between
gesture classes.

In order to reduce dimensionality, we used the random forest and stepwise forward selection method to
perform variable selection. We found that the motion of the muscles corresponding to the 2nd and 7th sensors
are almost decisive for these 4 gestures.

Among all the classification methods we tried, random forest and QDA have the best prediction performance.
So for this dataset, we choose QDA, as it is easier to compute and interpret. However, if in the future, we
need to classify much more gestures with very high dimensional data, random forest which can incorporate
more complicated models is more likely to be superior. In this case, other flexible methods such as neural
network can also be a potential option.

5. Reference

Yashuk, K. (2019). Classify gestures by reading muscle activity. https://www.kaggle.com/kyr7plus/emg-4#0.
csv
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Appendix

## Table 1
t1=data.frame(name=c("V65","V1-V8","V9-V16","V17-V24","V25-V32","V33-V40","V41-V48","V49-V56","V57-V64"),

type=c("categorical",rep("continuous",8)),des=c("Response (rock:0, scissors:1, paper:2, ok:3)",paste0("Reading ",1:8," Sensor 1-8")))
cap="Data Description"
knitr::kable(t1,format='pandoc',caption=cap,align='l',

col.names=c('Variables names','Type','Description'))
## Read the Data
dat0 = read.csv("0.csv", header = F)
dat1 = read.csv("1.csv", header = F)
dat2 = read.csv("2.csv", header = F)
dat3 = read.csv("3.csv", header = F)
g = rbind(dat0, dat1, dat2, dat3)
g$V65=as.factor(g$V65)
## Libraries
library(ggplot2);library(GGally);library(gbm);library(reshape2);library(gplots)
library(dplyr);library(e1071);library(tree);library(class);library(MASS);
library(nnet);library(randomForest);library(foreign);
# Response barchart & Scatterplot
knitr::include_graphics(c("response.png","scatterplot.png"))
## Table 2: Summary
summary_col = function(x)

{c(unname(quantile(x,c(0,0.25,0.5))),mean(x),unname(quantile(x,c(0.75,1))))}
t2=data.frame(Summary=c("Min.","1st Qu.","Median","Mean","3rd Qu.","Max."),

V1=summary_col(g[,1]),V2=summary_col(g[,2]),
V3=summary_col(g[,3]),V4=summary_col(g[,4]),
V5=summary_col(g[,5]),V6=summary_col(g[,6]),
V7=summary_col(g[,7]),V8=summary_col(g[,8]))

cap="Numerical Summaries (only part is shown)"
knitr::kable(t2,format='pandoc',caption=cap,align='l',digits = 2)
# Correlation plots
knitr::include_graphics(c("correlation1.png","correlation2.png"))
#Histograms of reading 1 of sensor 1 and sensor 7
knitr::include_graphics(c("r1sensor1.png","r1sensor7.png"))
# Contour of density
knitr::include_graphics(c("contour.png"))
# The Importance of the Variables
## Perform Variable Selection
## by random forest and check the importance of variables
#set.seed(77)
#rf=randomForest(V65~.,data=g,mtry=8,importance=TRUE)
#varImpPlot(rf)
knitr::include_graphics(c("VarImport.png"))
## Variable Selection by stepwise logistic regression based on AIC/BIC
#min.model = multinom(V65~1, data=g[train,])
#biggest = multinom(V65~., data=g[train,])
#fwd1.model = step(min.model, scope=formula(biggest), direction="forward")
#summary(fwd1.model)
#pred_lr1 = predict(fwd1.model, g[-train,])
#mean(pred_lr1 == g[-train,65])
#fwd2.model = step(min.model, scope=formula(biggest), direction="forward", k=log(length(train)))
#summary(fwd2.model)
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## Split the dataset into training and test sets
set.seed(77)
g_new=g[,c(seq(from=2,to=58,by=8),seq(from=7,to=63,by=8),65)]
train=sample(1:nrow(g_new),size=nrow(g_new)*0.8,replace=FALSE)
## Multinomial Logistic Regression
set.seed(3)
lr_fit1 = multinom(V65~., data=g_new[train,], trace=FALSE)
lr_fit2 = multinom(V65~poly(V2,2)+poly(V10,2)+poly(V18,2)+poly(V26,2)+poly(V34,2)+poly(V42,2)+poly(V50,2)+poly(V58,2)+poly(V7,2)+poly(V15,2)+poly(V23,2)+poly(V31,2)+poly(V39,2)+poly(V47,2)+poly(V55,2)+poly(V63,2), data=g_new[train,], trace=FALSE)
lr_pred1 = predict(lr_fit1, g_new[-train,])
accuracy_lr1 = mean(lr_pred1 == g_new[-train,'V65'])
lr_pred2 = predict(lr_fit2, g_new[-train,])
accuracy_lr2 = mean(lr_pred2 == g_new[-train,'V65'])
# Table 3: Logistic Regression Prediction
lr_pred = unname(cbind(table(g_new[-train,'V65'], lr_pred1), table(g_new[-train,'V65'], lr_pred2)))
colnames(lr_pred) = c("Linear 0","1","2","3","Quadratic 0","1","2","3")
knitr::kable(data.frame("Truth"=0:3, lr_pred), align = "c",

col.names = c("Truth vs Logistic Prediction", colnames(lr_pred)),
caption = "Logistic Regression (Linear & Quadratic) Prediction")

## LDA
lda_fit = lda(V65~., data=g_new[train,])
lda_pred = predict(lda_fit, g_new[-train,])$class
accuracy_lda = mean(lda_pred == g_new[-train,'V65'])
## QDA
qda_fit = qda(V65~., data = g_new[train,])
qda_pred = predict(qda_fit, g_new[-train,])$class
accuracy_qda = mean(qda_pred==g_new[-train,'V65'])
# Table 4: LDA, QDA
lqda_pred = unname(cbind(table(g_new[-train,'V65'], lda_pred),

table(g_new[-train,'V65'], qda_pred)))
colnames(lqda_pred) = c("LDA 0","1","2","3","QDA 0","1","2","3")
knitr::kable(data.frame("Truth"=0:3, lqda_pred),

col.names = c("Truth vs", colnames(lqda_pred)), align = "c",
caption = "LDA & QDA Prediction")

## Initialize
knn_cv_error = NULL
## Possible k's
k_list = 1:20
set.seed(3)
## Cross Validation function for knn
knn.cv = function(k, t, nfolds=5) {

n_train = nrow(t)
## Split training and validation sets
s = split(sample(n_train), rep(1:nfolds, length=n_train))
cv_error = 0
for(i in seq(nfolds)){

## Computing validation errors
knn_cv_pred = knn(t[-s[[i]],-17], t[s[[i]],-17], t[-s[[i]],17], k=k)
cv_error = cv_error + mean(knn_cv_pred!=t[s[[i]],17])

}
cv_error = cv_error / nfolds

}
## Perform cross validation
## choose k=3
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for(k in k_list) {
knn_cv_error = c(knn_cv_error, knn.cv(k, g_new[train,]))

}
## Plot validation errors
cap = 'The 5-fold Cross Validation Errors for Each Choice of K.'
plot(k_list, knn_cv_error, type='l', ylim=c(0.13, 0.23),

xlab='Number of Nearest Neighbors K', ylab='Cross Validation Error')
points(k_list[which.min(knn_cv_error)], min(knn_cv_error))
text(k_list[which.min(knn_cv_error)], min(knn_cv_error)-0.01, "3")
## Predicting by knn and k=3
set.seed(3)
knn_pred = knn(g_new[train,-17], g_new[-train,-17], g_new[train,17], k=3)
accuracy_knn = mean(knn_pred == g_new[-train,17])
# Table 5: KNN
k_pred = unname(cbind(table(g_new[-train,'V65'], knn_pred), 1))[,-5]
colnames(k_pred) = c("0","1","2","3")
knitr::kable(data.frame("Truth"=0:3, k_pred),

col.names = c("Truth vs KNN", colnames(k_pred)), align = "c",
caption = "KNN (K=3) Prediction")

## SVM radial kernel
#set.seed(77)
## The validation set
#valid=sample(train,size=floor(length(train)*0.2),replace=FALSE)
#train2=setdiff(train,valid)
## Possible parameters
#costv=c(0.01,0.1,1,10,100)
#gammav=c(0.5,1,2,3,4)
#svm_v_error=cbind(expand.grid(costv,gammav),0)
## Perform validation set method to choose parameters
#for (i in 1:nrow(svm_v_error)){
# svm_v_fit=svm(V65~.,data=g_new[train2,], kernel="radial", cost=svm_v_error[i,1],gamma=svm_v_error[i,2])
# svm_v_pred=predict(svm_v_fit,g_new[valid,])
# svm_v_error[i,3]=mean(svm_v_pred!=g_new[valid,"V65"])}
#svm_v_error[which.min(svm_v_error[,3]),]
## Fit svm with cost=1, gamma=0.5
svm_fit1=svm(V65~.,data=g_new[train,], kernel="radial", cost=1, gamma=0.5)
svm_pred1=predict(svm_fit1,g_new[-train,])
accuracy_svm1=mean(svm_pred1==g_new[-train,"V65"])
## SVM polynomial kernel
#set.seed(77)
## The validation set
#valid=sample(train,size=floor(length(train)*0.2),replace=FALSE)
#train2=setdiff(train,valid)
## Possible parameters
#costv=c(0.01,0.1,1,10,100,1000)
#degreev=c(2,3)
#svm_v_error=cbind(expand.grid(costv,degreev),0)
## Perform validation set method to choose parameters
#for (i in 1:nrow(svm_v_error)){
# svm_v_fit=svm(V65~.,data=g_new[train2,], kernel="polynomial", cost=svm_v_error[i,1],degree=svm_v_error[i,2])
# svm_v_pred=predict(svm_v_fit,g_new[valid,])
# svm_v_error[i,3]=mean(svm_v_pred!=g_new[valid,"V65"])}
#svm_v_error[which.min(svm_v_error[,3]),]
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## Fit svm with cost=100, degree=2
svm_fit2=svm(V65~.,data=g_new[train,], kernel="polynomial", cost=100, degree=2)
svm_pred2=predict(svm_fit2,g_new[-train,])
accuracy_svm2=mean(svm_pred2==g_new[-train,"V65"])
# Table 6: SVM
svm_pred = unname(cbind(table(g_new[-train,'V65'], svm_pred1),

table(g_new[-train,'V65'], svm_pred2)))
colnames(svm_pred) = c("Radial 0","1","2","3","Polynomial 0","1","2","3")
knitr::kable(data.frame("Truth"=0:3, svm_pred),

col.names = c("Truth vs SVM", colnames(svm_pred)), align = "c",
caption = "SVM with Radial & Polynomial Kernel Prediction")

# Decision Tree Plot and Random Forest Partial Plots
knitr::include_graphics(c("tree.png"))
## Classification Tree
tree_fit=tree(V65~.,data=g_new[train,])
tree_pred=predict(tree_fit,g_new[-train,],type="class")
accuracy_tree=mean(tree_pred==g_new$V65[-train])
# Random Forest
set.seed(77)
rf_fit=randomForest(V65~.,data=g_new[train,],mtry=4,importance=TRUE)
rf_pred = predict(rf_fit,newdata=g_new[-train,])
accuracy_rf=mean(rf_pred==g_new$V65[-train])
# Decision Tree Plot and Random Forest Partial Plots
knitr::include_graphics(c("randomforest.png"))
# Table 7: tree & random forest
t_pred = unname(cbind(table(g_new[-train,'V65'], tree_pred),

table(g_new[-train,'V65'], rf_pred)))
colnames(t_pred) = c("Tree 0","1","2","3","Random Forest 0","1","2","3")
knitr::kable(data.frame("Truth"=0:3, t_pred),

col.names = c("Truth vs", colnames(t_pred)), align = "c",
caption = "Decision Tree and Random Forest Prediction")

t2=data.frame(method=c("Logistic Regression","Logistic Regression with quadratic terms","LDA","QDA","KNN","SVM (radial)","SVM (polynomial)","Classification Tree","Random Forest"),
pred=100*c(accuracy_lr1,accuracy_lr2,accuracy_lda,accuracy_qda,accuracy_knn,accuracy_svm1,accuracy_svm2,accuracy_tree,accuracy_rf))

cap="Prediction Accuracy of Various Classification Methods"
knitr::kable(t2,format='pandoc',caption=cap,align='c',digits = 2,

col.names=c('Method','Prediction Accuracy %'))
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