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1. Introduction

Logistic regression is a very famous and widely applied technique in classification. It is usually used to
perform predictive analysis when the response variable is binary.

Logistic regression can also be approached by bayesian modeling. In general, bayesian analysis is more
flexible, and it is proved to be superior for small samples. Above all, We can incorporate prior information in
bayesian modeling. For example, if we want to reduce the dimension of predictors and avoid overfitting, some
shrinkage priors can be chosen to implement regularization.

In practice, predicting a binary response can be an application of the standard logistic regression as well
as the bayesian approach. In this report, we delve into a data set which is about heart health condition of
303 patients. This data set was collected between May 1981 and September 1984 at the Cleveland Clinic in
Cleveland, Ohio. The objective is to predict whether the patients have heart disease based on 13 independent
variables, such as age, sex, chest pain type, etc. In this process, we will explore the different effects of
specific predictors on response variable in different models, and will also compare prediction performance
among models.

2. Data Exploration

2.1 Dataset

The dataset is about heart disease of patients at the Cleveland Clinic in Cleveland, Ohio. It is from UCI
Machine Learning Repository, and has 303 observations and 14 variables in total. Every row is associated
with a patient. The response variable target is whether the angiographic result is present or absent of a
diameter narrowing larger than 50% (presence=1, absence=0). In other words, the patient is diagnosed as
having heart disease if target is 1, and not if target is 0. To predict the heart disease, the dataset collected
3 types of independent variables. Clinical variables such as age, sex, cp, trestbps, were related to clinical
effects. Predictors chol, fbs, and restecg were from routine tests, while variables thelach, exang, oldpeak,
slope, ca , and thal were collected from noninvasive test. More detailed descriptions of all the variables can
be found in Table 1.

The data collection process can be assumed as independent and without work-up bias. For each type of
variables (response, clinical, routine test, noninvasive test), the data were recorded and analyzed without any
knowledge of other types of variables.

2.2 Exploratory Analysis

In this section, we perform data exploration to understand possible relationships among the variables. Firstly,
we check the numerical summaries of the continuous and categorical variables in Table 2 and Table 3,
respectively. The dataset is very clean and has no missing value. Table 2 also shows that the continuous
variables all have some extreme values, especially chol and oldpeak. The average age of the recorded patients
is 54. Table 3 indicates that we have around 1/3 data from females and the rest 2/3 from males.

1



Table 1: Data Description

Variables Type Collection Description
target Binary Dependent Variable angiographic result of the presence or absence of a >50% diameter

narrowing; presence = 1; absence = 0.
age Continuous Clinical Variable age in years
sex Binary Clinical Variable 1=male; 0=female
cp Categorical Clinical Variable chest pain type; 0=typical angina; 1=atypical angina; 2=non-anginal;

3=asymptomatic
trestbps Continuous Clinical Variable systolic/resting blood pressure (in mm Hg on admission to the hospital)
chol Continuous Routine test serum cholestoral in mg/dl
fbs Binary Routine test (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false)
restecg Binary Routine test resting electrocardiographic results; 0=normal; 1=having ST-T wave

abnormality; 2=showing probable or definite left ventricular hypertrophy
by Estes’ criteria

thelach Continuous Noninvasive test maximum heart rate achieved
exang Binary Noninvasive test exercise induced angina (1 = yes; 0 = no)
oldpeak Continuous Noninvasive test ST depression induced by exercise relative to rest
slope Ordinal Noninvasive test the slope of the peak exercise ST segment; 0=upsloping; 1=flat;

2=downsloping
ca Ordinal Noninvasive test number of major vessels (0-3) that appeared to contain calcium
thal Categorical Noninvasive test exercise thallium scintigraphic defects; 3=normal; 6=fixed defect;

7=reversable defect

Table 2: Summary of Continuous Variables

age trestbps chol thalach oldpeak
Min. 29.00000 94.0000 126.000 71.0000 0.000000
1st Qu. 47.50000 120.0000 211.000 133.5000 0.000000
Median 55.00000 130.0000 240.000 153.0000 0.800000
Mean 54.36634 131.6238 246.264 149.6469 1.039604
3rd Qu. 61.00000 140.0000 274.500 166.0000 1.600000
Max. 77.00000 200.0000 564.000 202.0000 6.200000

Table 3: Summary of Categorical Variables

target sex cp fbs restecg exang slope ca thal
0: 138 female: 96 0: 143 0: 258 0: 147 0: 204 0: 21 0: 175 0: 2
1: 165 male: 207 1: 50 1: 45 1: 152 1: 99 1: 140 1: 65 1: 18

2: 87 2: 4 2: 142 2: 38 2: 166
3: 23 3: 20 3: 117

4: 5

Next, we take a look at the heart disease dataset through visualization. Figure 1 shows the pairwise
scatterplots and histograms of continuous variables. These variables age, trestbps, chol, thelach, oldpeak
display weak correlations between each other. In Figure 2, we try to explore the relationship between the
target and the continuous variables by boxplots. It is noticed that the patients who are detected to have
heart disease have an overall higher maximum heart rate achieved (thalach). It implies that thalach is a
possibly significant preditor on target.
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Figure 1: Pairwise scatterplots and histogram of continuous variables.
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Figure 2: Boxplots of continuous variables.

Finally, let us take a quick look at the bar charts of categorical variables against response variable in Figure
3. As we could see, the response target is relatively balanced. In addition, we can also find that some
categorical independent variables may be important to predict target. For instance, the distributions of
target are quite different when sex is female (sex = 0) or male (sex = 1) . However, for other predictors
such as restecg, it seems to be not very influential on target.
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Figure 3: Bar charts of categorical variables.
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3. Logistic Regressions

In this part, we will briefly introduce three logistic regression models, including a standard one and two
bayesian ones. There are several advantages to use logistic regression instead of other methods here. First, it
can be interpreted. It helps to explain the relationship between the predictors and the response variable.
Next, the logistic regression can also handle mixed types of explanatory variables. Most importantly, we have
a binary response in this problem. So logistic regression models are appropriate methods here.

3.1 Data Preparation

Before we perform logistic regressions to dataset, we need to prepare our data first. First, we turn categorical
variables into dummy variables by using R function model.matrix. As a result, the number of independent
variables grow from 13 to 23 (including intercept). In order to test the prediction performance of the models,
we then randomly split the whole dataset into training (80%) and test (20%) sets. Our training dataset has
273 observations and test dataset has 30 observations.

3.2 Logistic Regression

The basic assumption of standard logistic regression model is that observations y1, ..., yn are independent and
follow binomial distribution (1, pi), where pi is the probability of yi = 1. We could obtain point estimates
of parameters β, which maximizes Πn

i=1P (Yi = yi) using maximum likelihood approach. The statistical
description is as below:

y1, ..., yn, are independent, and yi ∼ Binomial (1, pi)

log( pi

1− pi
) = xT

i β + β0

p(yi;β, β0) = (pi)yi(1− pi)1−yi , p(y1, ..., yn;β, β0) =
n∏

i=1
(pi)yi(1− pi)1−yi

where xi is the i-th row observation and β, β0 are parameters.

Using glm function in R, we could easily obtain estimates of β parameters. Table 4 provides us some summary
statistics of the fitted results. From p.value column, we could observe that only 6 out of 23 predictors are
significant in our model. If the significance level is α = 0.1, there are still only 9 significant predictors, which
encourages us to seek sparse solutions.

Table 4: Summary of Logistic Regression

Estimate Std.Error z.value p.value Variable Estimate Std.Error z.value p.value
(Intercept) -14.352 1455.4 -0.0098614 0.99213 exang1 -0.87782 0.49443 -1.7754 0.075826
age 0.03118 0.027578 1.1306 0.25822 oldpeak -0.14036 0.26153 -0.53668 0.59149
sex1 -1.799 0.62267 -2.8891 0.003863 slope1 -0.71803 0.98917 -0.72589 0.4679
cp1 1.0622 0.626 1.6969 0.089725 slope2 0.34136 1.0496 0.32523 0.74501
cp2 2.0539 0.56815 3.6151 0.00030025 ca1 -2.1807 0.55128 -3.9558 7.6278e-05
cp3 2.0025 0.72838 2.7492 0.0059741 ca2 -3.7367 0.91634 -4.0779 4.5449e-05
trestbps -0.019333 0.01262 -1.5319 0.12554 ca3 -3.0051 1.0555 -2.8472 0.0044108
chol -0.0062214 0.0042669 -1.4581 0.14482 ca4 1.3665 1.8836 0.72547 0.46816
fbs1 0.3258 0.64056 0.50862 0.61102 thal1 16.482 1455.4 0.011325 0.99096
restecg1 0.53266 0.42534 1.2523 0.21045 thal2 15.813 1455.4 0.010865 0.99133
restecg2 -1.2948 2.6708 -0.48482 0.6278 thal3 14.111 1455.4 0.0096957 0.99226
thalach 0.022983 0.01242 1.8506 0.064233
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3.3 Bayesian Logistic Regression with N-IG Prior

In the standard logistic regression above, we treat β as a column of unknown but fixed parameters. Actually,
β, β0 could be seen as a vector of random variables from the prospective of bayesian analysis. In this way,
we could combine data (model) and the prior we build up to obtain not only a point estimate, but also the
posterior samples of parameters. In addition to basic assumptions of standard logistic regression, bayesian
logistic regression method with N-IG prior assumes that β, β0 subject to a normal prior with mean µi and
variance σ2, where the variances follow an Inverse-Gamma distribution with hyper parameters a and b. The
parameters µi, a, and b are assumed to be flat because we don’t have much information about them. Although
it probably results in improper prior, the powerful tool Rstan in R will help and still generate posterior
samples of parameters. The statistical description is shown as below:

y1, ..., yn, are independent
Likelihood: yi ∼ Binomial (1, pi)

Parameters: log( pi

1− pi
) = xT

i β

Prior: βi ∼ N(µi, σ
2
i )

Hyper prior: σ2
i ∼ Inv-Gamma(a, b)

µi, a, b are assumed to have flat distribution.

Using Rstan, we implement Monte Carlo Markov Chain algorithm (MCMC) to our model and obtain posterior
samples of interested parameters β, β0. We naturally compute their 95% credible intervals based on the
sample quantiles. The Figure 4 shows the comparision of the corresponding parameters obtained by standard
logistic regression and bayesian logistic. The red lines represent the estimates of β from standard logistic
regression and green lines represent the 95% credible intervals produced by posterior samples of β, while blue
lines indicate the location of 0.

Figure 4: Estimate of parameters beta.

In fact, if the sample size is large enough compared to the number of predictors, the estimations of bayesian
analysis should be very similar to those of frequentist models. Even though the dataset here is not very large
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that it only has 303 observations, we can also see that most red lines, which are estimates from standard
logistic regression, fall into the 95% credible intervals of posterior samples, meaning that most predictors
produce similar effects in both models. In addition, comparing the blue vertical lines, which represent the
‘0’, to the credible intervals, we can find that the significance of most parameters are not different from
the results of the standard logistic regression model. In contrast, the absolute values of the coefficients of
variables intercept, thal1, thal2 and thal3 in bayesian logistic regression are much smaller than the ones
in the standard model. This may result from the fact that bayesian logistic regression could incorporate the
information from priors, make full use of data and adjust the effects of these nonsignificant variables properly.

3.4 Bayesian Logistic Regression with NEG prior

Recall that in Table 4 most variables actually do not produce significant effects to the response. In order to
figure out the most important predictors to the target response, we choose to use bayesian logistic models
with shrinkage priors. There are many priors which are proved to have shrinkage effects to the parameters, for
example, Cauchy prior, Laplace prior and horseshoe prior. Normal-Exponential prior, which has similar effect
as LASSO regression, is a common option for logistic regression. The reason why NE prior has a shrinkage
effect on β, β0 is that the exponential distribution of variance lays a great mass of probabilities around 0. As
a result, initial β, β0 will gather around 0 with a large probability. The next problem is how we can control
the shrinkage effect. In frequentist analysis, it usually uses cross-validation to choose shrinkage control
parameters. But sometimes cross validation is computationally intensive. Instead, in bayesian modeling, we
can build up a hyper prior usually Gamma distribution (a0, b0) on λ. So finally, we perform bayesian logistic
regression model with NEG prior, and the detailed statistical model is shown as below.

y1, ..., yn, are independent, and yi ∼ Binomial (1, pi)

Parameters: log( pi

1− pi
) = xT

i β

prior: βi ∼ N(0, σ2
i )

Hyper Prior: P (σ2
i ) ∼ Exponential (λ)

λ ∼ Gamma (a0, b0), where a0, b0 are two fixed parameters.

Another important problem for this model is how to choose hyperparameters a0, b0, as we do not want to
too many nuisance parameters. We decide to use a method similar to model checking. First, we propose
a pair of possible a0, b0. Second, we simulate a λ and a matrix of “Fake Data” which is generated from
normal distribution N(0, 1) based on our model. Then we could get a vector of generated responses following
the model generating process and obtain a summary statistic (e.g., mean) of the responses. We repeat the
previous steps for 1000 times and obtain the distribution of the summary statistic. Finally, comparing the
distribution of mean summary statistic to the one of the true data, we choose reasonable values of a0, b0.
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Figure 5: Selection of hyperparameters a0, b0
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In this example, we try several pairs of (a0, b0) and their corresponding results are shown above in Figure 5.
Though both a0 = 0.5, b0 = 0.5 and a0 = 5, b0 = 5 are appropriate, we finally choose a0 = 5, b0 = 5.

Implementing this model in Rstan, we obtain both the posterior distributions of β, β0 and λ. From the
posterior distribution of λ in Figure 6, bayesian method shows its power to make the posterior distribution of
λ more centered around 0.8 compared to prior. And we will discuss about the differences between posterior
distribution of parameters β, β0 of bayesian logistic regression with NEG prior and the parameters from other
two models in next section.

Figure 6: Histogram of the posterior distribution of lambda

4 Model Comparison

4.1 Inference

Figure 7 shows point estimates and estimated confidence intervals of parameters β, β0 from all three different
models above. Here, we take the mean of posterior samples as the point estimates for bayesian models.

Figure 7: Confidence interval and point estimate of beta

From this plot, we could observe that NEG prior does have strong shrinkage effects on the coefficients that 0
is included in most of blue confidence intervals. We also notice that the variables kept are exactly the same
significant variables in standard logistic regression, i.e., sex1, cp2, cp3, ca1, ca2 and ca3. Therefore, gender,
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symptom of chain pain and the number of major vessels which appeared to contain calcium are three most
important factors to the target response.

In addition, confidence intervals with NEG prior are narrowed down compared to the ones with N-IG prior,
for example, of the variables slope1 and intercept, meaning that the estimates of parameters are more
concentrated and precise.

In conclusion, bayesian logistic regression with NEG prior is a very efficient method which combines model
fitting with variable selection.

4.2 Prediction

Based on standard logistic regression model, it is easy to make predictions using function predict. We
make predictions and obtain the confusion matrix with 22 right predictions and 8 wrong ones as below. The
accuracy is about 73.33%.

Table 5: Confusion matrix for logistic regression

Predicted: No Predicted: Yes
Actual: No 11 4
Actual: Yes 4 11

To compare the models, we are going to use two indices log-loss and sensitivity instead of accuracy to
evaluate the prediction performance of the three models.

For prediction analysis, we should generate predictive samples from the posterior distributions of β, β0, as
the posterior distribution has been updated by incorporating information from data and prior. To do this, we
first randomly draw samples of β from the posterior distribution many times. And then we generate new y
which has the same size of responses as the test dataset for each sample of β. In this way, we could obtain
many groups of predictions for test data. Finally, we compare each group of predicted responses with the
original test data.

4.2.1 Log-Loss

To combine raw probabilities P (y = 1|β, β0) as well as the true response, we use log-loss rather than accuracy
for predication analysis. Log-loss or logarithmic loss is a metric used in classification problems to compare
the prediction performance of different models. The lower the log-loss is, the better the performance is. For
logistic regression, log-loss is defined as:

−log(y|p) = −ylog(p)− (1− y)log(1− p)

where y is the target value 0 or 1, p is the probability P (y = 1|β, β0).

Using this formula, we calculate the log-loss value of the standard logistic regression and the density
distributions of the log-loss values of bayesian logistic regression models and show them in Figure 8. Average
log-loss values for bayesian methods are also computed and marked in the plot.
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Figure 8: Histogram of predictive log-loss

It is shown that the log-loss values of bayesian models have a large improvement compared to the logistic
regression, while the model with NEG prior is even better than the one with N-IG prior in log-loss. In
summary, bayesian logistic regression model with shrinkage prior performs best in log-loss.

4.2.2 Sensitivity

Sensitivity is another index of great importance to heart disease detection. If a patient does have heart
disease, it will be a big deal if doctors misdiagnose him as not having. Sensitivity here is used to measure
the true positive rate of our prediction. That is, the proportion of the patients with heart diseases to be
diagnosed correctly.

We also use a plot to illustrate the superiority of bayesian logistic regression model with NEG prior in
sensitivity. See Figure 9. Standard logistic regression model produces a sensitivity of 68.25% and
bayesian model with N-IG prior shows 72.05% sensitivity, while bayesian model with NEG prior has an
average sensitivity of 74.56% which is higher than both of others.
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Figure 9: Histogram of predictive sensitivity

In conclusion, bayesian logistic regression model with shrinkage prior (NEG prior) outperforms other two
models in prediction. The bayesian logistic regression models both have a better prediction performance than
the standard logistic regression, which indicates the significance and power of the bayesian analysis.
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5. Conclusion & Future Work

In conclusion, for large dataset, standard logistic regression and bayesian logistic regressions may produce
very similar results. But in general, bayesian modeling is more flexible and has better performance when we
do not have many observations.

We may also include sparse assumption of solutions to shrink the parameters of the non-significant variables
to 0 in our model. In this way, we could reduce dimensionality and better the prediction performances, as
only those factors which have important effects on the response variable would be kept. It is also easier
for us to interpret the models in this case. That gender, symptom of chain pain and the number of vessels
containing calcium are three most important independent variables which could affect the response greatly.

For this dataset, bayesian logistic regression with NEG prior has the best prediction performance in both
log-loss and sensitivity compared to standard logistic regression and bayesian logistic regression with N-IG
prior. And the two bayesian logistic regression models both have a better prediction performance than the
standard logistic regression, which shows the significance and powerfulness of the bayesian analysis.

For future work, the benefit of bayesian logistic models should be verified for datasets from different clinic.
Moreover, as the highest sensitivity of bayesian model with NEG is only about 74.56%, we expect that other
classification methods may have better prediction performance.
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